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Abstract

Transformers have become the primary backbone of the
computer vision community due to their impressive perfor-
mance. However, the unfriendly computation cost impedes
their potential in the video recognition domain. To opti-
mize the speed-accuracy trade-off, we propose Semantic-
aware Temporal Accumulation score (STA) to prune spatio-
temporal tokens integrally. STA score considers two crit-
ical factors: temporal redundancy and semantic impor-
tance. The former depicts a specific region based on
whether it is a new occurrence or a seen entity by ag-
gregating token-to-token similarity in consecutive frames
while the latter evaluates each token based on its contri-
bution to the overall prediction. As a result, tokens with
higher scores of STA carry more temporal redundancy as
well as lower semantics thus being pruned. Based on the
STA score, we are able to progressively prune the tokens
without introducing any additional parameters or requir-
ing further re-training. We directly apply the STA module
to off-the-shelf ViT and VideoSwin backbones, and the em-
pirical results on Kinetics-400 and Something-Something
V2 achieve over 30% computation reduction with a neg-
ligible ∼ 0.2% accuracy drop. The code is released at
https://github.com/Mark12Ding/STA.

1. Introduction

Recently, there has been an unstoppable shift in the gen-
eral backbone design from Convolutional Neural Networks
(ConvNets) to Transformers, which are originally employed
in natural language processing, and has shown promising
potential for various vision tasks [8, 48, 47, 22, 1, 32, 5].
The key component of Transformers is the self-attention
mechanism, which is apt to capture long-range dependen-
cies and empowers ViT to perceive the global reception
field. The seminal work, Vision Transformer (ViT) [8]
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Figure 1: Kinectics-400 result for ViT and VideoSwin. The
bubble’s area is proportional to FLOPs of a variant in a
model family. ViT/VideoSwin here takes 16/32 × 2242

video. The proposed STA saves over 30% FLOPs for all
model variants with a negligible drop in performance.

closely follows the original Transformer architecture [38].
Equipped with a large-scale model and dataset, ViT outper-
forms ConvNets in image classification by a considerable
margin. Inspired by this superior scaling behavior, Trans-
formers have gained popularity as a backbone choice and
are widely adopted for image recognition [22, 37], action
recognition [1, 23], semantic segmentation [49, 6], action
detection [43, 12], temporal perception [33, 34], etc.

Despite the promising potential of Transformers in
spatio-temporal vision tasks, such as action recognition, the
quadratic increase in complexity caused by the temporal
dimension makes the video Transformers computationally
unfriendly compared to images. For instance, earlier work
TimeSformer [2], which applies Transformer backbone for
video, required 7.14 Tera FLOPs to achieve 80.7% accuracy
on the Kinetics-400 action recognition benchmark. The ex-
cessive computational cost makes it impractical for deploy-
ment in real-world scenarios. Therefore, there is an urgent
need to explore ways to profit from the performance gains



of Transformers while maintaining an affordable computa-
tion burden.

Fortunately, Transformers can handle a flexible number
of tokens as input. Recent attempts [31, 30, 42], that dy-
namically prune tokens for images, have remarkably re-
duced computation overhead. These pruning approaches
have inspired us to explore token pruning in the video do-
main, so as to balance accuracy and computation costs ac-
cordingly. However, performing frame-wise pruning alone
seems to be not optimal since it ignores temporal context
and disrupts the dynamic structure of the video. To ad-
dress this issue, recent work STTS [40] decouples token
pruning into temporal and spatial dimensions. Specifically,
STTS first drops meaningless frames and then filters out
detail-rich regions from the remained frames. However, this
spatio-temporal decoupling strategy lacks contextual mod-
eling of continuous temporal information, leading to limited
performance.

In this paper, we argue that pruning spatio-temporal to-
kens integrally can lead to further computation reduction at
an acceptable cost of accuracy degradation. To this end,
we propose the Semantic-aware Temporal Accumulation
(STA) score to depict the importance of each token. We
take two factors into consideration, temporal redundancy
and semantic importance. Our motivation is to discard to-
kens that have similar counterparts appearing earlier in the
sequence while retaining only semantically significant to-
kens. As an example, static backgrounds across all times-
tamps contain highly repetitive information that is unnec-
essary to be included. Therefore, keeping only a few rep-
resentative background patches is sufficient for reasoning.
Specifically, we evaluate the temporal redundancy of a re-
gion by determining whether it is a novel or previously ob-
served entity. In practice, we aggregate repetitive informa-
tion on a per-frame basis and assign each token a score of
temporal repetition degree. Nevertheless, there are cases
where a repetitive region reveals a crucial action and should
be retained. For example, if the sequence of tokens de-
scribes human-body motion, it is necessary to keep all the
tokens for better understanding, even if there are only slight
differences over time. Thus, we also take semantic impor-
tance into account during the pruning procedure. To depict
each token’s semantic contribution to video recognition, we
take the summation of the feature activation map and then
integrate this summation with the score of temporal aggre-
gation to enhance the awareness of semantics. Based on the
STA score, we progressively prune the tokens of the video
Transformers three times. The whole pruning process does
not introduce any tuning parameter and directly accelerates
the off-the-shelf video Transformers without the need to re-
train.

We apply our pruning strategy to two mainstream video
Transformers, ViT [8] and VideoSwin [23], and evalu-

ate 10 off-the-shelf backbones on two action recognition
benchmarks, Kinetics-400 [14] and Something-Something
V2 [11], to demonstrate the effectiveness of our method.
As shown in Figure 1, we achieve significant computa-
tion reduction with a negligible accuracy drop on Kinetics-
400. For instance, using ViT-H as the backbone, by hier-
archically pruning 57% of the input tokens, STA reduces
49% FLOPs while the accuracy drop is only 0.2%. Be-
sides, with STA, FLOPs of VideoSwin-B are decreased by
38% while maintaining 82.5% accuracy with only a mini-
mal drop of 0.2%. A similar trend can also be observed in
the Something-Something V2 dataset. Notably, we surpass
STTS [40] by a 0.4% accuracy gain with 40% fewer FLOPs
on Kinetics-400 and by a 0.5% accuracy increase with 20%
fewer FLOPs on Something-Something V2 when using the
same backbone.

2. Related Work

Video Transformers. Designing Transformer-based ar-
chitectures for vision tasks has emerged as a general trend
in the computer vision community, as evidenced by sev-
eral recent works [8, 22, 50, 28, 49, 24, 39]. With an un-
precedented number of parameters and millions of train-
ing data, Transformers significantly outperform prior arts
spanning a variety of tasks, not only in image but also in
video understanding tasks. Various variants of self-attention
have been introduced in prior works [2, 26, 47, 1, 4, 28,
9, 23, 46, 19] to capture the spatiotemporal relationship.
However, using pure patch-based Transformers incurs pro-
hibitive costs on memory and computation when extract-
ing global-range features from the whole video. To deal
with it, Motionformer [28] introduces trajectory attention
that focuses on implicitly determined motion paths and op-
timizes the quadratic calculation via efficient decomposi-
tion. MeMViT [43] proposes caching ‘memory’ of past
frames and attending to the summarized prior context in
an online manner. In this paper, we propose an orthogo-
nal approach to make Transformers lighter by pruning the
spatio-temporal tokens with high temporal redundancy.

Token pruning for Transformers. Several works [31,
30, 42, 20, 25, 3, 17] have focused on reducing the num-
ber of tokens involved in the calculation to accelerate image
Transformer models. In specific, DynamicViT [30] trains a
lightweight decision module to rate the importance of each
token and prune low-score tokens progressively. EViT [20]
preserves the attentive tokens guided by the class token at-
tention and fuses inattentive ones without the help of any
extra parameter. ToMe [3] combines similar tokens to di-
rectly expedite off-the-shelf ViT without needing to train.
While similar to ToMe [3], our method functions as a simple
plug-in to enhance off-the-shelf video Transformers without
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(a) Conceptual pipeline of video Transformer with STA module. (b) Illustration of the proposed STA module.
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Figure 2: An overview of our STA token-pruning algorithm for video Transformers. (a) STA module is a simple plug-in and
can be inserted at the beginning or end of the Transformer block. In practice, we conduct a three-stage progressive strategy
to prune the token with STA. (b) Our semantic-aware temporal accumulation algorithm. The wider arrows connecting two
adjacent frames represent higher weight to transport the STA score.

requiring additional training. However, ToMe is an image-
based pruning technique that does not model any tempo-
ral relations. In contrast, our method specifically devises
a temporal aggregation mechanism tailored for video data.
Although STTS [40] trains a score network to choose pre-
defined anchors from filtered frames within a video, the
empirical speed-accuracy trade-off remains limited. This
is because decoupled anchor-level selection still retains un-
wanted spatial redundancy. On the contrary, we prune the
video at the token level and eliminate the meaningless con-
tent by a large margin.

Efficient video recognition. Due to the nature of the ex-
tra dimension, video understanding is computationally in-
tensive. Thus, there have been attempts [51, 10, 36, 44, 15,
41, 7, 18, 16, 21, 13, 29] to design lightweight modules that
enjoy both high efficiency and high accuracy. ECO [51] in-
troduces a network architecture to sample a small subset
of frames and learns the temporal context between these
frames. Besides, AdaFocus [41] improves the computa-
tional efficiency by adopting a light-weighted ConvNet to
localize the most salient spatiotemporal regions. While pre-
vious works have mainly concentrated on accelerating Con-
vNet models, efforts toward accelerating video Transform-
ers have been relatively sparse and open to exploration. A
recent approach [27] devises a novel token-based sampling
using k-centered search before feeding tokens into video
Transformers. Although we also select semantically mean-
ingful tokens for video Transformers, our dynamic model
processes whole tokens at the early stage and prunes them
based on model-dependent features.

3. Approach
The goal of this paper is to develop a principal token-

pruning algorithm for video Transformers that achieves
an optimal balance between cost, speed, and performance
without requiring model re-training. We start by analyz-
ing the video Transformers at hand and observe two in-
teresting phenomena, detailed in Sec. 3.3. First, we find
the high temporal redundancy when comparing the inter-
frame similarity. Second, the area that contributes to the
final prediction usually takes up a small portion. Motivated
by these two findings, we carefully develop two principles
to prune the tokens with high temporal redundancy and re-
tain the meaningful tokens. The overall framework is shown
in Figure 2(a). Our method is mainly built on the standard
columnar Transformer [8], which we briefly go through in
Sec. 3.1. Later, in Sec. 3.2, we elaborate on the proposed
metric to help prune unnecessary tokens. Finally, Sec. 3.3
discusses why STA works in video Transformer.

3.1. Revisit of Video Transformer

Video Transformers generally process video data as a 1D
sequence of tokens and directly model the relationship be-
tween them. Initially, video Transformer linearly projects
3D data tubes into high-dimensional embeddings. Assum-
ing the dimensions of video clips as {T,H,W} and the size
of 3D tubes as {t, h, w}, then the number of token embed-
dings is n = nt × ns = |Tt | × |HW

hw |. Additionally, po-
sitional embeddings are added to each token to break the
permutation invariance. After the patch embedding layer,
an n-token sequence X ∈ Rn×d is passed into the self-
attention layer, which computes a weighted sum of the val-
ues based on the affinity of other tokens. Mathematically,



the self-attention is formulated as:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (1)

where Q,K,V = fQ(X), fK(X), fV (X) ∈ Rd are typ-
ically linear transformations of X. After spatial-temporal
interaction, the tokens are sent into a feedforward network
fFFN, which consists of a three-layer MLP to exchange
inter-channel information.

3.2. Semantic-aware Temporal Accumulative Score

Our intuitive criterion is to drop a token if similar to-
kens exist before it while reserving semantically meaning-
ful tokens. To this end, our approach considers two factors
when determining whether to retain or discard a token in
the Transformer. The first is its similarity to the other tokens
along the temporal axis, and the second is its contribution to
the class attribute. We discuss these two principles in order.

Temporal redundancy. Intuitively, a token should be re-
moved if similar tokens have already existed in previous
frames. Therefore, we remove tokens frame-by-frame by
comparing whether similar tokens have been retained. For
simplicity, we reduce a constant number of tokens in each
frame to ensure parallel computing. We introduce the ac-
cumulative temporal score A ∈ [0, 1]nt×ns to model the
probability of dropping a token conditioned on the specific
frame t. Specifically, we define:

At,s := Pdrop(Xt,s) ∈ [0, 1] s.t.

ns∑
s=1

At,s = 1, (2)

where tokens with higher temporal accumulative scores are
more likely to be pruned because they carry a high degree
of temporal redundancy. Next, we eliminate r tokens with
the highest scores from A at t-th frame and transfer the
remaining probability distribution A

′

t ∈ R(ns−r)×1 to the
next frame via the transition probability Pdrop(Xt|X

′

t−1) ∈
Rns×(ns−r). By excluding the dropped tokens of the last
frame, we effectively restart the repetition aggregation. This
prevents the high scores from being concentrated on spe-
cific tokens and allows for the global identification of re-
dundancy. Mathematically,

At+1 := Pdrop(Xt+1|X
′

t)A
′

t,

Pdrop(Xt+1|X
′

t) := softmax(f(Xt+1)f(X
′

t)
T ),

(3)

where f is the projection head to measure the similarity,
and we construct transition probability by softmax-based
affinity matrix. Note that we do not need to train a new
projection head f because the self-attention provides the
necessary functionality, and the key function fK extracts
most relevant knowledge for affinity estimation, as shown

Algorithm 1 Pseudocode of STA in a PyTorch-like style.

# x: token embedding, n_t x n_s x d
# I: image-based token pruning method
# r: drop number per frame
# sim: token-to-token affinity function

# min-max norm, Eqn.(4)
aam = norm(x.abs().sum(-1)) # size: (n_t, n_s, 1)

# token removal at 1-st frame
x_0 = I(x[0]) # size: (n_s-r, d)

# initialization
x_list, x_old = [x_0], x_0
for t in range(1, n_t):

# token-to-token affinity matrix
A_t = sim(x[t], x_old) # size: (n_s, n_s-r)
# accumulative temporal score
s_acc = mm(A_t, s_acc) # size: (n_s, 1)
# class-aware accumulative temporal score, Eqn.(5)
s = s_acc * (1-aam[t])
s = s.squeeze(dim=-1) # size: (n_s)

# keep tokens with the minimal score
i_t = s.topk(k=N-r, largest=False) # size: (n_s-r)
x_old = x[t, i_t] # size: (n_s-r, d)
x_list = x_list.append(x_old)

# cut off the dropped tokens’ score
s_acc = s_acc[i_t] # size: (n_s-r, 1)
# first-order norm
s_acc = s_acc / s_acc.sum()

return stack(x_list, dim=0) # size: (n_t, n_s-r, d)

mm: matrix multiplication.

in Table 6c. This formulation allows us to connect all tem-
porally distinct tokens through a simple Markov chain and
aggregate potential redundancy from the first frame to every
subsequent frame.

Semantic importance. Up until this point, our approach
has focused on capturing temporally repetitive information.
However, we have neglected the influence of semantic at-
tributes. In other words, we have treated each token equally,
regardless of its contribution to the semantics of the class.
To integrate semantics importance with our approach, we
use the activation-based attention map F [45], which takes
the feature matrix X ∈ Rnt×ns×d as input and produces a
score for each token in the matrix. Specifically, we define
the semantic score for token Xt,s as:

F(Xt,s) =

d∑
i=1

|Xt,s,i| ∈ R+. (4)

Intuitively, through the summation of absolute activation
values over channel dimension, a high absolute activation
suggests a significant contribution to next layers. Moreover,
we apply STA on off-the-shelf Transformers supervised by
semantic labels, where high activation areas tend to repre-
sent discriminative category information. Thus, activation-
based attention maps could effectively capture the impor-
tance or relevance of the token to the overall semantics. We
then use this score to re-weigh the temporal accumulative



scores A, giving tokens with high semantic contributions
less weight in the pruning process. This ensures that tokens
with high semantics are more likely to be retained, even if
they have a high degree of temporal redundancy.

Finally, we compute the semantic-aware temporal ac-
cumulative score Ãt,s by integrating the semantic score
F(Xt,s) with the accumulative temporal score A, i.e.,

Ãt,s = (1−F(Xt,s))At,s, (5)

where F(Xt,s) is min-max normalized to the range
[0,1]. We utilize the semantic-aware accumulative tempo-
ral scores to guide token removal for all subsequent frames,
except for the first frame. Thus, we adopt an image-based
token pruning method on the first frame to kick off our algo-
rithm. Once tokens are discarded through our strategy, they
are never employed in subsequent layers, thus accelerating
the inference of the Transformer.

We summarize the pseudocode of STA in Alg. 1. The al-
gorithm takes token embedding X ∈ Rnt×ns×d, an image-
based token pruning method I , the number of tokens to drop
per frame r, and a token-to-token affinity function as inputs.
The algorithm calculates the STA score for each frame, se-
lects the tokens with the minimal STA score, and retains
them for the next frame. This process is repeated for all
frames and returns the resulting token embedding matrix
with the retained tokens X′ ∈ Rnt×(ns−r)×d.

Summary of the superiority of STA. Compared to the
previous token-pruning methods, our approach, STA, offers
three significant merits when applied to video data:

• STA fully considers the potential repetition of tokens
along the temporal axis and eliminates the genuine re-
dundancy with insignificant semantics. The tempo-
ral aggregation design makes the scoring mechanism
more motion-aware and suitable for video data;

• STA works as a plug-in module without the introduc-
tion of additional parameters and it does not require
the retraining of the video Transformer;

• STA achieves a complexity of O (ntns(ns − r)), re-
sulting in negligible additional FLOPs that only take
up a small percentage of the total forward pass. More-
over, our algorithm allows for the bulk of computation
to be done in parallel, making it friendly to modern
GPU devices.

Overall, our approach is efficient and easily deployable,
making it an ideal solution for pruning video Transformers.

3.3. Discussion

In this section, we present a two-part practical analysis
to shed the light on the intuition behind STA.

Model Small Base Large Huge
ViT 5.10 5.38 5.07 5.55
Rand-ViT 5.00 5.32 4.95 5.46
STA-ViT 4.43 4.74 4.28 4.78

Table 1: Trajectory sum for ViT family on the Kinetics-
400 validation set. Compared to random pruning, STA-ViT
decreases the temporal redundancy significantly.
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Figure 3: Gradient visualization for ViT-Large on the
Kinetics-400 validation set. We stack original RGB frames,
gradient norm heatmap, and our pruning result from top to
bottom. Our pruning algorithm preserves the area of rich
semantics well.

Does STA effectively reduce the temporal redundancy?
To answer this question, we first define temporal redun-
dancy as the frequency with which similar tokens appear at
different timestamps. We then assess this phenomenon in a
video by probing the last frame, denoted as X−1 ∈ Rns×d,
and aggregating the cosine similarity between each token
and the most similar tokens in previous frames. We term
this aggregation as trajectory sum S ∈ R. Mathematically,

S =
1

ns

ns∑
i=1

nt−1∑
t=1

max
j∈{1,··· ,ns}

cos-sim(X−1,Xt)ij , (6)

where cos-sim(X,Y)ij =
Xi·Yj

|Xi||Yj | . A higher trajectory
sum indicates greater temporal redundancy and lower di-
versity along the temporal axis. When all the frames are
the same, the score would reach its theoretical maximum,
which is Nt − 1. Then, we compare our method with
the standard Transformer and random-prune counterparts in
terms of the proposed trajectory sum. Table 1 shows that
the video Transformer exhibits heavy temporal redundancy
and random pruning fails to alleviate them considerably. In
contrast, STA achieves a far lower trajectory sum, indicat-
ing that it effectively eliminates temporal redundancy.

Does STA retain semantics-rich tokens? To manifest it,
we calculate the gradient norm for each token when back-
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propagating the training loss L. We then aggregated the
first-order gradient norm of Xl at each layer l to obtain the
GradNorm, which reflects the contribution of each token to
the final prediction. Mathematically,

GradNorm(X) =

L∑
l=1

d∑
i=1

∣∣∣∣∣ ∂L
∂Xl

·,·,i

∣∣∣∣∣ ∈ Rnt×ns , (7)

where L is the total number of the Transformer block, e.g.,
L = 24 for ViT-Large. Figure 3 shows the GradNorm distri-
bution in the form of a heatmap. The heatmap reveals sparse
patterns across the board, indicating that most tokens do
not contribute significantly to the final prediction. Instead,
the key regions responsible for the final prediction are usu-
ally motion-centric entities. This agrees with our intuition
of highlighting semantically meaningful regions. With the
help of activation-based attention map F in Eqn. (4), STA
retains almost all areas of high-activation GradNorm as is
evidenced in the last row of Figure 3.

4. Experiments

4.1. Experimental Setup

Datasets and backbones. We evaluate our algorithm on
two standard video action recognition datasets. Kinetics-
400 [14] (K400) and Something-Something V2 [11]
(SSV2). Kinetics-400 is a large-scale action recognition
dataset sourced from YouTube, which consists of around
10-second clips with 400 human action classes. The train-
ing and validation set has approximately 240K and 20K
videos, respectively. Something-Something V2 is a motion-
heavy benchmark with 174 labels, where the object and
background are shared across the different action cate-
gories. Around 170K and 25K videos exist in the train-
ing and validation set of SSV2, respectively. We imple-
ment our STA strategy with two mainstream Transformer-
based backbones, namely ViT [8] and VideoSwin [23]. For
ViT, we sample 16 frames with 2242 pixels as input and
the size of 3D tube is {2, 16, 16}. Therefore, the number
of tokens for all layers is n = 16

2 × 2242

162 = 8 × 142. We
load the open-sourced checkpoints from VideoMAE [35]
due to its superior performance. For VideoSwin, the input
resolution is 32× 2242 and the size of 3D tube is {2, 4, 4}.
The number of tokens at four hierarchical stages would be
{16 × 562, 16 × 282, 16 × 142, 16 × 72}. Though our
algorithm is not intended for window-based Transformers
that require structural integrity, we still find a simple solu-
tion. We compensate for the discarded token with the near-
est kept tokens when computing the window attention and
speed up the rest of the process, such as the linear projec-
tion. In total, we test 10 off-the-shelf backbones with dif-
ferent pre-trained weights on two benchmarks.

Implementation details. To progressively remove inat-
tentive tokens, we apply our STA module three times. For
ViT, we insert our STA module at the end of the 1st,
(1 + L/3)th, (1 + 2L/3)th block, where L is the total
number of Transformer blocks. For VideoSwin, there are
four hierarchical stages with varied resolutions and the STA
module is located at the end of the first three stages. We de-
note different variants of STA as STAr1 -Model, where r1 is
the number of spatial tokens dropped per frame at the first
stage. We adopt a decreasing schedule, which reduces the
dropped number by half at each stage. For instance, STA64-
ViT-L indicates pruning {8 × 64, 8 × 32, 8 × 16} tokens
on ViT-Large. We weigh the computation via two metrics,
FLOPs (floating-point operations) and throughput. FLOPs
are reported with the help of fvcore library1 and throughput
(clips/s) is measured at a batch size of 32 on a single 32G
Tesla V100. Besides, we closely follow the inference metric
for ViT and VideoSwin in [35, 23].

• ViT [35]: To evaluate on K400, we sample 5 × 3 views
by uniformly selecting 5 16-frame clips from a full-
length video in the temporal dimension with the frame
stride of 4. For each clip, we resize the shorter spatial
side to 224 pixels and extract 3 crops of 224 × 224
resolution that cover the longer spatial axis. The final
score is the average score computed over all views. For
SSV2, we follow a similar procedure by sampling 2
clips × 3 crops and the frames stride is 2.

• VideoSwin [23]: For K400, we extract 4 32-frame
clips from each full-length video using a temporal
stride of 2 and a spatial size of 224 × 224. Sim-
ilarly, for SSV2, we extract 1 set of clips using a
spatial size of 224 × 224 and 3 spatial crops, with a
frame stride of 2. Besides, we prune VideoSwin three
times as {r1, 1.5r1/4, 2r1/16}. For instance, STA256-
VideoSwin-S indicates pruning {16 × 256, 16 ×
96, 16× 32} on VideoSwin-S.

4.2. Main Results

We conduct a thorough investigation of two off-the-
shelf model families, ViT [8] and VideoSwin [23], on the
Kinetics-400 and Something-Something V2 datasets. The
results presented in Table 2 demonstrate that our proposed
method can significantly reduce the computational costs of
ViT models by 25%∼ 49%, with negligible impacts on per-
formance (-0.2% ∼ -1.0%). It is worth noting our method
shows a favorable trade-off between complexity and perfor-
mance for larger models. For instance, our method reduces
the FLOPs of ViT-Huge by half to just 611 GFLOPs, with
only a 0.2% drop in accuracy.

To demonstrate the potential of our method to generalize
well on various transformer backbones, we are conducting

1https://github.com/facebookresearch/fvcore



Base Model Metrics Drop Number r1

0 32 48 64

ViT-S
K400 Acc. (%) 78.8 78.8 (-0.0) 78.6 (-0.2) 78.1 (-0.7)
SSV2 Acc. (%) 66.8 66.6 (-0.2) 66.4 (-0.4) 65.8 (-1.0)
GFLOPs 57 42 (-26%) 35 (-39%) 29 (-49%)

ViT-B
K400 Acc. (%) 81.2 81.2 (-0.0) 81.1 (-0.1) 80.8 (-0.4)
SSV2 Acc. (%) 70.6 70.4 (-0.2) 70.3 (-0.3) 69.9 (-0.7)
GFLOPs 180 136 (-24%) 116 (-36%) 96 (-47%)

ViT-L K400 Acc. (%) 85.1 85.2 (+0.1) 85.1 (-0.0) 85.0 (-0.1)
GFLOPs 597 446 (-25%) 376 (-37%) 308 (-48%)

ViT-H K400 Acc. (%) 86.3 86.3 (-0.0) 86.2 (-0.1) 86.1 (-0.2)
GFLOPs 1192 890 (-25%) 748 (-37%) 611 (-49%)

Table 2: Main Results for STA-ViT family on Kinetics-400 [14] (K400) and Something-Something V2 [11] (SSV2). All
input resolution is 16× 2242.

Base Model Metrics Drop Number r1

0 192 256 320

VideoSwin-T K400 Acc. (%) 78.8 78.7 (-0.1) 78.7 (-0.1) 78.6 (-0.2)
GFLOPs 88 68 (-23%) 61 (-31%) 54 (-39%)

VideoSwin-S K400 Acc. (%) 80.5 80.3 (-0.2) 80.2 (-0.3) 80.1 (-0.4)
GFLOPs 166 121 (-27%) 106 (-36%) 91 (-45%)

VideoSwin-B

K400 Acc. (%) 82.7 82.5 (-0.2) 82.5 (-0.2) 82.3 (-0.4)
K400 GFLOPs 282 202 (-28%) 176 (-38%) 149 (-47%)
SSV2 Acc. (%) 69.6 69.6 (-0.0) 69.5 (-0.1) 69.2 (-0.4)
SSV2 GFLOPs 321 241 (-25%) 215 (-33%) 188 (-41%)

Table 3: Main Results for STA-VideoSwin family on Kinetics-400 [14] (K400) and Something-Something V2 [11] (SSV2).
All input resolution is 32× 2242. VideoSwin-B employs varying window sizes for K400 and SSV2, leading to a discrepancy
in FLOPs.

further experiments on VideoSwin [23], a modern architec-
ture that uses a window shuffling operation to interchange
information. As VideoSwin is naturally unsuitable for un-
structured tokens, we are filling the dropped locations dur-
ing the window attention operation with the nearest tokens
and then discarding the replicated tokens after the attention
operation. Empirical results in Table 3 indicate that the per-
formance of VideoSwin holds until FLOPs fall by roughly
40%. This observation verifies that both columnar ViT and
hierarchical VideoSwin have heavy and unnecessary com-
putations that can be significantly optimized.

Comparison with the state of the art. Firstly, we tabu-
late a comparison of our proposed method on K400 in Ta-
ble 4. Our model performs favorably in terms of both accu-
racy and computation cost. For example, ViT-L equipped
with our STA achieves the same accuracy as MViTv2-
L [19] but with less than a quarter of the computational cost.
Moreover, STTS [40] proposes a scorer network to conduct
dynamic token selection separately in space and time, re-

quiring to be trained in an end-to-end fashion. Our result
surpasses STTS by 0.4% accuracy using the same backbone
VideoSwin-B but with only 60% GFLOPs. This result veri-
fies that leveraging the model itself to weigh the redundancy
of tokens is sufficient to reduce complexity. We also report
the result on SSV2 in Table 5. The superior performance
of our proposed method verifies that STA prunes the incon-
sequential tokens via temporal cues, as it is known that un-
derstanding SSV2 mainly relies on temporal information.
Specifically, ViT-B equipped with our STA surpasses most
of the prior arts with a considerably minor complexity of
116 GFLOPs. For VideoSwin, our strategy outperforms
STTS-VideoSwin by 0.5% accuracy with 80% of the com-
putation cost.

Visualization of STA. Figure 4 shows image patches cor-
responding to kept tokens after three stages. The results
align with our objective of resisting temporal redundancy
and retaining informative tokens. In a tennis sequence, STA
preserves the most meaningful patches, including a human



Model GFLOPs×views Top-1
TimeSformer-L [2] 8353× 1× 3 80.7
Motionformer-L [28] 1185× 10× 3 80.2
ViViT [1] 3981× 4× 3 84.9
Swin-L [23] 2107× 10× 5 84.9
MViTv2-L [19] 2828× 5× 3 86.1
ViT-H [35] 1192× 5× 3 86.3
STTS-VideoSwin-B [40] 253× 4× 3 81.9
ToMe-ViT-L [3] 281× 10× 1 84.5
STA320-VideoSwin-B (ours) 149× 4× 3 82.3
STA64-ViT-L (ours) 308× 5× 3 85.0
STA64-ViT-H (ours) 611× 5× 3 86.1

Table 4: Comparisons with the-state-of-the-arts method on
Kinetics-400. We report the computational cost with a sin-
gle view (temporal clip with spatial crop) × the number of
views (FLOPs× viewtime × viewspace). Gray represents
that this method leverages the dynamic token pooling to op-
timize existing backbones.

Model GFLOPs×views Top-1
TimeSformer-L [2] 5549× 1× 3 62.4
Motionformer-L [28] 1185× 1× 3 68.1
MViTv2-B [19] 225× 1× 3 70.5
VideoSwin-B [23] 321× 1× 3 69.6
ViT-B [35] 180× 2× 3 70.6
STTS-VideoSwin-B [40] 237× 1× 3 68.7
STA320-VideoSwin-B (ours) 188× 1× 3 69.2
STA48-ViT-B (ours) 116× 2× 3 70.3

Table 5: Comparisons with the-state-of-the-arts method on
Something-Something V2. We report the computational
cost with a single view (temporal clip with spatial crop) ×
the number of views (FLOPs× viewtime × viewspace). Gray
represents that this method leverages the dynamic token
pooling to optimize existing backbones.

at the far end of the court, and filters out dull backgrounds
like the blue ground. The temporal aggregation design en-
sures that the kept tokens are not just the most salient ones
but also a variety of regions, preserving diversity within
videos for better reasoning.

4.3. Ablation Study

To find the optimal strategy, we conduct a series of abla-
tion studies. We evaluate off-the-shelf ViT-Large on K400
by default and report accuracy, FLOPs, and throughput for
reference unless otherwise stated.

Token removal at the first frame. To investigate how the
first-frame removal affects performance, we conduct exper-
iments on three candidates. (1) Random Prune: we ran-
domly select r tokens to discard. (2) Grid Prune: we split
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Figure 4: Visualization of the proposed STA strategy. We
masked out the discarded tokens with white boxes. STA
not only retains informative tokens but also ensures diverse
regions for improved video reasoning.

the first frame into
√
r ×

√
r grids spatially and drop one

random token per grid. (3) ToMe Prune: inspired by re-
cent image pruning method ToMe [3], we get rid of the
most similar tokens by the simple bipartite soft matching.
The difference here is that we just drop tokens rather than
‘merge’ tokens. Note that all three pruning ways are negli-
gible in the terms of computation and lead to similar speed-
up. It actually echoes the main insight of STA, leverag-
ing temporal aggregation to reduce spatio-temporal redun-
dancy. Even given a random initialization state, the sequen-
tial STA strategy could still decrease the total temporal re-
dundancy and optimize the video Transformers effectively.

Pruning schedule. We explore how to assign the number
of dropping tokens among three stages. When maintaining
a similar throughput, we devise three types of schedules:

Constant Schedule:{8× 48, 8× 48, 8× 48};
Decreasing Schedule:{8× 64, 8× 32, 8× 16};
Increasing Schedule:{8× 27, 8× 54, 8× 108}.

As shown in Table 6d, the decreasing schedule owns the
least accuracy reduction with similar throughput. It verifies
that standard video Transformers process a great number of
uninformative tokens that can be dropped at the beginning.

Temporal accumulation order. Besides starting the ac-
cumulation flow from the beginning of the input video, we
could also kick off at the ending frames. In Table 6b,
we empirically find alternating order at different dropping
stages outperforms the consistent counterparts. We spec-
ulate that the same accumulation direction would amplify



Method Top-1 Top-5
Random 84.78 96.46
Grid 84.85 96.50
ToMe 84.96 96.50

(a) Ablation on token removal meth-
ods at the first frame.

Order Top-1 Top-5
F-B-F 84.96 96.50
B-F-B 84.97 96.43
F-F-F 84.26 96.41
B-B-B 84.35 96.37

(b) Ablation on temporal accumula-
tion order.

Similarity Top-1 Top-5
fQ 84.83 96.52
fK 84.96 96.50
fV 84.84 96.50
fFFN 84.94 96.50

(c) Ablation on different similarity
function f .

Schedule Top-1 Top-5 clips/s
constant 84.68 96.36 47
decreasing 84.96 96.50 47
increasing 77.68 93.72 44

(d) Ablation on dropping schedule among three stages.

Score ViT-S ViT-B ViT-L
1−F(Xt,s) 77.33 80.52 84.87
At,s 77.78 80.43 84.69
(1−F(Xt,s))At,s 78.12 80.82 84.96

(e) Ablation on scoring mechanism. Top-1 is reported.

Table 6: Results of STA ablation experiments. F and B in (b) mean forward and backward order, respectively. The baseline
ViT-L without STA obtains 85.05% Top-1 and 96.55% Top-5 accuracy on K400 at 19.5 clips/s. Gray is our default setting.

intrinsic propagation error but alternating the order counter-
acts it, leading to more reasonable pruning.

Similarity function choice. We ablate four similarity
project heads {fQ, fV , fK , fFFN}. Table 6c shows that key
function fk captures the most correct affinity with minimal
noise. The observation coincides with previous work [3].

Scoring mechanism. To explore how accumulation score
and semantic identification boost each other, we conduct
the experiment with different scoring formulas. Table 6e
demonstrates that considering both temporal redundancy
and semantics helps in discovering informative tokens. The
results on ViT-S show that temporal aggregation modeled
by the Markov Chain plays an important role in the pruning
process, while semantic importance functions effectively
for ViT-B and ViT-L.

Performance vs. prune number r. To seek the sweet
spot of our algorithm, we vary the prune number r at the
first stage ranging from [16, 96] and evaluate the Top-1 ac-
curacy. In addition, we compare our STA with the Ran-
dom pruning baseline. As displayed in Figure. 5, STA be-
haves fairly robust to the token reduction and consistently
surpasses the result of the random pruning. Specifically,
r = 64 doubles the throughput but just drops 0.1% accu-
racy. This confirms that our algorithm retains the semantics-
rich tokens with the lowest redundancy.

5. Conclusion
In conclusion, we propose a new token pruning strat-

egy, Semantic-aware Temporal Accumulation (STA), for

r =16

r =32
r =48

r =64

r =80
r =96

r =16

r =32 r =48
r =64

r =80

r =96

Figure 5: Top-1 accuracy and throughput under two pruning
methods with various prune numbers r.

video Transformers that can significantly reduce compu-
tation overhead with a subtle accuracy drop. Specifically,
we consider temporal redundancy and semantic importance
when deciding to keep or drop the token. Our approach does
not introduce any parameter and can directly accelerate the
off-the-shelf video Transformers without training. The ex-
tensive experiments demonstrate that our method empowers
video Transformers to obtain a competitive speed-accuracy
trade-off compared to the prior arts.
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A. More Experimental Results

Training details. We also train the ViT-B with our pro-
posed STA. We adopt dense sampling [5, 2] on K400. We
sample 16 consecutive frames with the stride of 4. The res-
olution is 224 × 224. We perform RandAug augmentation
(9, 0.5) [1], label smoothing (0.1) [4], mixup (0.8) [7], cut-
mix (1.0) [6], and random horizontal flip (0.5). In addition,
we adopt the repeated augmentation [3]. With DeepSpeed 1,
We use the linearly scale scheme to ensure effective param-
eter updates across different batch sizes during training, i.e.,
lr = base learning rate × batch size / 256. Specifically, we
use the AdamW optimizer with a base learning rate of 1e−3
and weight decay of 0.05. Beside, using a cosine decay
learning rate scheduler and 5 epochs of linear warm-up, we
finetune the model for 100 epochs with a total batch size of
128 on 4 nodes of 8 Tesla V100 GPUs.

Training results. Besides speeding up the inference of
off-the-shelf backbones, our algorithm also has the poten-
tial to expedite training. We report the training hours for
ViT-Base in Table 1. STA cuts the training time in half.
Without modifying the training recipe, the trained model
only drops 0.6 % in Top-1 accuracy. We believe that STA
would be more effective to maintain the performance when
training deeper backbones. We leave it as the future work.

Number of views. To analyze the impact of the number of
test clips on our method, we conduct an experiment by vary-
ing the number of clips and comparing the results with the
baseline ViT-L model. In Table. 2, we show that the relative
performance drop remains constant at approximately 0.1%
regardless of the number of views, when the drop number
is set to r1 = 64. Furthermore, when using a lower value
of r1 = 48, there is no significant decrease in performance
compared to the baseline.

1https://github.com/microsoft/DeepSpeed

Model clips/s Training time Top-1
ViT-B 53 28 hrs 81.2
STA48-ViT-B 96 15 hrs 80.6

Table 1. Comparison on training time on Kinetics-400. We mea-
sure training time on 4 nodes of 8 V100.

Views Drop Number r1

0 48 64 80
2 × 3 83.36 83.21 83.09 82.56
4 × 3 85.10 85.00 84.85 84.35
6 × 3 85.05 85.07 84.84 84.59
8 × 3 84.91 84.93 84.80 84.43
16 × 3 84.91 84.97 84.89 84.48

Table 2. Ablation on the temporal views of test clips.

# of STA GFLOPs Top-1 Location GFLOPs Top-1
2 302 84.5 1,9,17 308 85.0
3 308 85.0 3,11,19 339 85.0
4 305 84.8 5,13,21 370 85.1

Table 3. Ablation on the number of STA blocks and insert location.

Number of STA blocks and insert location We devise
two extra ablation studies shown in Table 3. Our experi-
ments demonstrate that incorporating 3 progressive blocks
at the very first beginning achieves an optimal trade-off.
This approach allows for preferable computation while de-
livering maximal performance.

B. More Visualization
We provide more visualization for our STA on K400

in Figure 1 and SSV2 in Figure 2, which display image
patches that correspond to the tokens retained after three
stages of pruning. We observe that the pruning results align
well with our objective of preserving detail-rich tokens and
resisting temporal redundancy. Specifically, upon examin-
ing the guitar-playing sequence in Figure 1, STA accurately
preserves two partially visible guitars on the wall. Addi-

1



tionally, the dropped tokens shown in Figure 2 at different
timestamps are distributed unevenly, preserving the diver-
sity of the video content.
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Figure 1. Visualization of our STA strategy on K400.
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Figure 2. Visualization of our STA strategy on SSV2.
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