Static and Dynamic Concepts for Self-supervised Video Representation Learning

Rui Qian¹, Shuangrui Ding², Xian Liu¹, Dahua Lin^{1,3}

¹ The Chinese University of Hong Kong
² Shanghai Jiao Tong University
³ Shanghai Artificial Intelligence Laboratory

Motivation

- Humans can conclude general basic concepts from detailed observations for visual perception
- Videos typically contain static and dynamic concepts that facilitate video understanding

(a) Soccer Juggling

(b) Basketball

• Concept prototype definition

$$P_s \in \mathbb{R}^{K_s \times C}, \quad P_d \in \mathbb{R}^{K_d \times C}, \quad P_v \in \mathbb{R}^{(K_s + K_d) \times C}$$

• Feature extraction

$$\boldsymbol{s} = GAP(f(s)), \quad \boldsymbol{d} = GAP(f(d)), \quad \boldsymbol{v} = GAP(f(v))$$

• Latent concept code formulation

$$m{q}_{m{s}}^{(k)} = rac{m{P}_{m{s}}^{(k)} \sigma_s(m{s})^T}{||m{P}_{m{s}}^{(k)}||_2 ||\sigma_s(m{s})||_2}, \quad m{q}_{m{s}} \in \mathbb{R}^{K_s}$$

• Decoupled concept alignment

$$\mathcal{L}_{aln} = -\sum_{k=1}^{K_s} \left(\overline{\boldsymbol{q}_s}^{(k)} \log \frac{\exp(\boldsymbol{q}_v^{\boldsymbol{s}(k)}/\tau)}{\sum_{k'} \exp(\boldsymbol{q}_v^{\boldsymbol{s}(k')}/\tau)} + \overline{\boldsymbol{q}_v^{\boldsymbol{s}}}^{(k)} \log \frac{\exp(\boldsymbol{q}_s^{(k)}/\tau)}{\sum_{k'} \exp(\boldsymbol{q}_s^{(k')}/\tau)} \right) \\ -\sum_{k=1}^{K_d} \left(\overline{\boldsymbol{q}_d}^{(k)} \log \frac{\exp(\boldsymbol{q}_v^{\boldsymbol{d}(k)}/\tau)}{\sum_{k'} \exp(\boldsymbol{q}_v^{\boldsymbol{d}(k')}/\tau)} + \overline{\boldsymbol{q}_v^{\boldsymbol{d}}}^{(k)} \log \frac{\exp(\boldsymbol{q}_d^{(k)}/\tau)}{\sum_{k'} \exp(\boldsymbol{q}_d^{\boldsymbol{d}(k')}/\tau)} \right)$$

• Diversity regularization

$$\mathcal{L}_{div} = \| \boldsymbol{q_s} \|_1 + \| \boldsymbol{q_d} \|_1 + \| \boldsymbol{q_v} \|_1$$

• Fidelity regularization

$$\mathcal{L}_{fid} = \|g_s(\boldsymbol{q_s}) - \boldsymbol{s}\|_2^2 + \|g_d(\boldsymbol{q_d}) - \boldsymbol{d}\|_2^2 + \|g_v(\boldsymbol{q_v}) - \boldsymbol{v}\|_2^2$$

• Local concept attention

$$\boldsymbol{F_s} = QKV(\boldsymbol{P_s}, f(\boldsymbol{s}), f(\boldsymbol{s})), \quad \boldsymbol{F_s} \in \mathbb{R}^{K_s \times C}$$

• Valid concept selection

$$idx_s = top-k(q_s, K) \cap top-k(q_v^s, K)$$

• Local concept contrast

$$l(\boldsymbol{F_s}, \boldsymbol{F_v^s}) = \sum_{k \in \boldsymbol{idx_s}} \left[\left\| \boldsymbol{F_s^{(k)}} - \boldsymbol{F_v^s}^{(k)} \right\|_2^2 + \sum_{\widetilde{\boldsymbol{F}} \in \mathcal{N}} \max\left(\lambda - \left\| \boldsymbol{F_s^{(k)}} - \widetilde{\boldsymbol{F}_v^s}^{(k)} \right\|_2, 0\right)^2 \right]$$

• Local contrast loss

$$\mathcal{L}_{loc} = l(F_{s}, F_{v}^{s}) + l(F_{v}^{s}, F_{s}) + l(F_{d}, F_{v}^{d}) + l(F_{v}^{d}, F_{d})$$

• Overall training loss

$$\mathcal{L} = \mathcal{L}_{aln} + \alpha \mathcal{L}_{loc} + \beta \mathcal{L}_{fid} + \gamma \mathcal{L}_{div}$$

Video action recognition

- Linear probe
- End-to-end finetune

Method	Backbone	Pretrain Dataset	Frames	Res.	Freeze	UCF-101	HMDB-51
CBT <u>64</u>	S3D	Kinetics-600	16	112	\checkmark	54.0	29.5
RSPNet [11]	R3D	Kinetics-400	16	112	\checkmark	61.8	42.8
MLRep 57	R3D	Kinetics-400	16	112	\checkmark	63.2	33.4
CoCLR† 28	S3D	Kinetics-400	32	128	_ √	74.5	46.1
Ours	R(2+1)D	UCF-101	16	112	\checkmark	67.4	40.7
Ours	R(2+1)D	Kinetics-400	16	112	\checkmark	72.1	45.9
Ours	S3D	Kinetics-400	16	128	\checkmark	75.1	47.4
TempTrans 35	R(2+1)D	UCF-101	16	112	X	81.6	46.4
LSFD 3	R3D	UCF-101	32	112	×	77.2	53.7
STS† <u>68</u>	R(2+1)D	UCF-101	16	112	×	77.8	40.7
CoCLR† 28	S3D	UCF-101	32	128	×	81.4	52.1
Ours	$\mathbf{R}(2+1)\mathbf{D}$	UCF-101	16	112	~ ~ ~	82.1	49.7
Ours	S3D	UCF-101	32	128	×	83.7	53.8
ASCNet 31	R3D	Kinetics-400	16	112	×	80.5	52.3
Pace 70	R(2+1)D	Kinetics-400	16	112	×	77.1	36.6
VideoMoCo 53	R(2+1)D	Kinetics-400	32	112	×	78.7	49.2
RSPNet [11]	R(2+1)D	Kinetics-400	16	112	×	81.1	44.6
TCLR 15	R(2+1)D	Kinetics-400	16	112	×	84.3	54.2
TimeEq 34	S3D-G	Kinetics-400	32	128	×	86.9	63.5
STS† <u>68</u>	S3D-G	Kinetics-400	64	224	×	89.0	62.0
CoCLR† 28	S3D	Kinetics-400	32	128	×	87.9	54.6
Ours	R(2+1)D	Kinetics-400	16	112	X	86.1	54.8
Ours	S3D	Kinetics-400	16	128	×	88.3	56.4

Ablation study

- Training loss
- Number of concepts

ſ,	(<u>ſ</u> .	\mathcal{L}_{loc}	UC	F-101	HMDB-51		
Laln	Lfid	$\mathcal{L}div$		Linear	Finetune	Linear	Finetune	
\checkmark				61.4	76.3	40.3	44.7	
\checkmark	\checkmark	\checkmark		68.1	80.1	43.2	47.9	
\checkmark			\checkmark	67.4	78.9	43.3	46.4	
\checkmark	\checkmark	\checkmark	\checkmark	72.1	82.1	45.9	49.7	

Ablation study

- Training loss
- Number of concepts

K_s	K_d	UCI	F-101	HMDB-51		
		w/ \mathcal{L}_{loc}	w/o \mathcal{L}_{loc}	w/ \mathcal{L}_{loc}	w/o \mathcal{L}_{loc}	
25	25	70.3	61.2	43.0	39.4	
25	50	71.7	66.3	44.1	40.8	
50	25	71.3	65.2	44.8	42.4	
50	50	72.1	68.1	45.9	43.2	
100	100	72.3	68.8	45.8	44.3	
200	200	72.3	69.4	45.6	44.1	

Per-class Static Dynamic and Joint Feature Analysis

Visualization of static and dynamic concept attention map

(a) Playing Violin

(b) Breast Stroke

(c) Playing Cello

(d) Diving