

Abstract:

- **Task:** Efficient Action Recognition
- **Problem:** Increased Complexity in Video Transformer due to the extra temporal dimension.
- Our solution: We propose Semantic-aware Temporal Accumulation score (STA) to prune spatio-temporal tokens integrally. We consider two factors to form STA score: temporal redundancy and semantic importance.

Method (STA):

> Temporal Redundancy

We introduce the accumulative temporal score **A** to model the probability of dropping a token. Next, we eliminate r tokens with the highest scores from A at t-th frame and transfer the remaining probability distribution to the next frame via the transition:

$$\begin{split} \mathbf{A}_{t+1} &:= \mathbb{P}_{drop}(\mathbf{X}_{t+1} | \mathbf{X}_{t}^{'}) \mathbf{A}_{t}^{'}, \\ \mathbb{P}_{drop}(\mathbf{X}_{t+1} | \mathbf{X}_{t}^{'}) &:= \operatorname{softmax}(f(\mathbf{X}_{t+1}) f(\mathbf{X}_{t}^{'})^{T}), \end{split}$$

This formulation allows us to aggregate potential redundancy from the first frame to every next frame.

> Semantic Importance.

We devise to treat each token differently via its contribution to the semantics of the class. Specifically, we define the semantic score for token $X_{t,s}$ as:

$$\mathcal{F}(\mathbf{X}_{t,s}) = \sum_{i=1}^{d} |\mathbf{X}_{t,s,i}| \in \mathbb{R}^+$$

Through the summation of absolute activation values over channel dimension, a high absolute activation tend to represent discriminative category information.

Semantic-aware Temporal Accumulation Score

$$\widetilde{\mathbf{A}}_{t,s} = (1 - \mathcal{F}(\mathbf{X}_{t,s}))\mathbf{A}_{t,s},$$

> Three Advantages of STA

- Motion-aware and suitable for video data through temporal accumulation mechanism;
- A simple plug-in module without the introduction of additional parameters and the retraining of the video Transformer;
- Negligible additional FLOPs and feasible for the bulk of computation to be done in parallel.

Prune Spatio-temporal Tokens by Semantic-aware Temporal Accumulation

Shuangrui Ding, Peisen Zhao, Xiaopeng Zhang, Rui Qian, Hongkai Xiong, Qi Tian

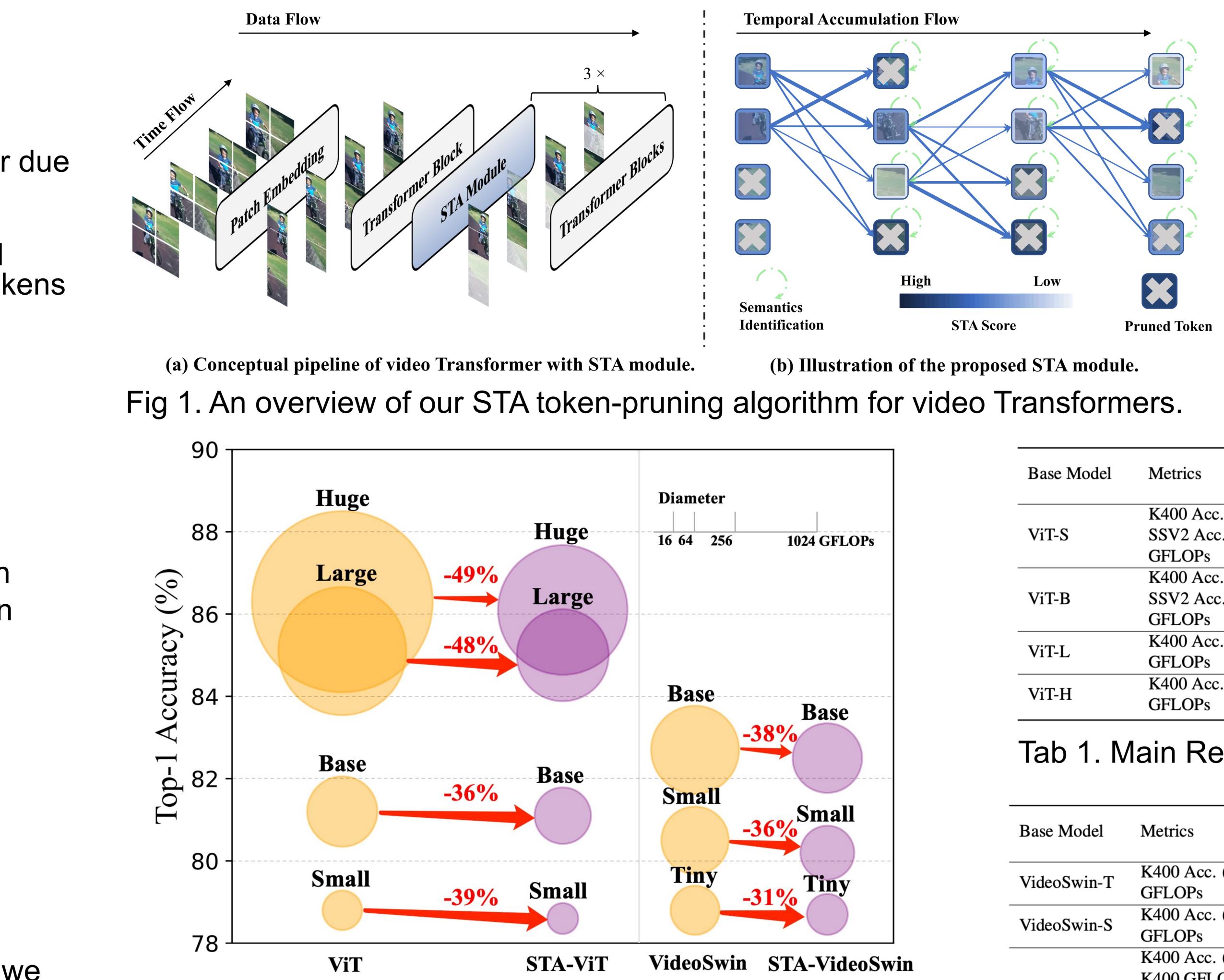


Fig 2. Kinectics-400 result for ViT and VideoSwin. The bubble's area is proportional to FLOPs of a variant in a model family.

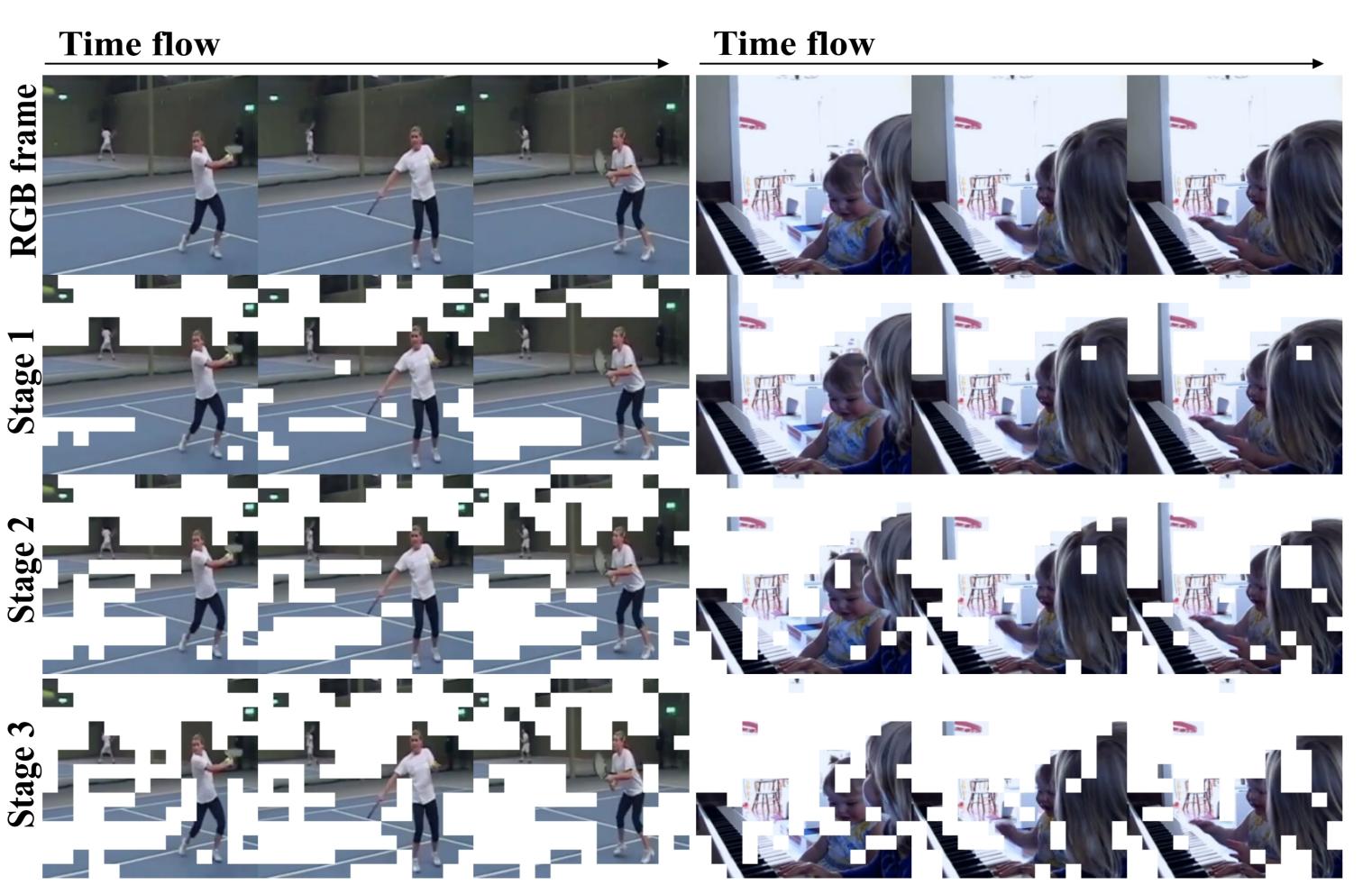


Fig 3. Visualization of the proposed STA strategy. Selected tokens represent diverse and significant parts of a video.

Experiments:

- baseline, as shown in Figure 4.
- significantly to the final prediction.

Base Model	Metrics	Drop Number r_1				Model	GFLOPs×views	Top-1
		0	32	48	64	TimeSformer-L [2]	$8353 \times 1 \times 3$	80.7
	K400 Acc. (%)	78.8	78.8 (-0.0)	78.6 (-0.2)	78.1 (-0.7)	Motionformer-L [28]	1185 imes 10 imes 3	80.2
ViT-S ViT-B	SSV2 Acc. (%)	66.8	66.6 (-0.2)	66.4 (-0.4)	65.8 (-1.0)	ViViT [1]	3981 imes 4 imes 3	84.9
	GFLOPs	57	42 (-26%)	35 (-39%)	29 (-49%)	Swin-L [23]	2107 imes 10 imes 5	84.9
	K400 Acc. (%)	81.2	81.2 (-0.0)	81.1 (-0.1)	80.8 (-0.4)	MViTv2-L [19]	2828 imes 5 imes 3	86.1
						ViT-H [35]	1192 imes 5 imes 3	86.3
	SSV2 Acc. (%)	70.6	70.4 (-0.2)	70.3 (-0.3)	69.9(-0.7)	STTS-VideoSwin-B [40]	253 imes 4 imes 3	81.9
	GFLOPs	180	136 (-24%)	116 (-36%)	96 (-47%)	ToMe-ViT-L [3]	$281 \times 10 \times 1$	84.5
ViT-L	K400 Acc. (%)	85.1	85.2 (+0.1)	85.1 (-0.0)	85.0 (-0.1)	STA ³²⁰ -VideoSwin-B (ours)	$149 \times 4 \times 3$	82.3
	GFLOPs	597	446 (-25%)	376 (-37%)	308 (-48%)			
ViT-H	K400 Acc. (%)	86.3	86.3 (-0.0)	86.2 (-0.1)	86.1 (-0.2)	STA ⁶⁴ -ViT-L (ours)	$308 \times 5 \times 3$	85.0
	GFLOPs	1192	890 (-25%)	748 (-37%)	611 (-49%)	STA ⁶⁴ -ViT-H (ours)	$611 \times 5 \times 3$	86.1

TAD I. MAIN RESULTS ION STA-VIT ON NAUU AND SSVZ.

Base Model	Metrics	Drop Number r_1				Model	GFLOPs×view	
	ivietite5	0	192	256	320	TimeSformer-L [2]	$5549 \times 1 \times 3$	
VideoSwin-T	K400 Acc. (%)	78.8	78.7 (-0.1)	78.7 (-0.1)	78.6 (-0.2)	Motionformer-L [28]	$1185 \times 1 \times 3$	
	GFLOPs	88	68 (-23%)	61 (-31%)	54 (-39%)	MViTv2-B [19]	$225 \times 1 \times 3$	
VideoSwin-S	K400 Acc. (%)	80.5	80.3 (-0.2)	80.2 (-0.3)	80.1 (-0.4)	VideoSwin-B [23]	$321 \times 1 \times 3$	
	GFLOPs	166	121 (-27%)	106 (-36%)	91 (-45%)	ViT-B [35]	$180 \times 2 \times 3$	
VideoSwin-B	K400 Acc. (%)	82.7	82.5 (-0.2)	82.5 (-0.2)	82.3 (-0.4)	L J		
	K400 GFLOPs	282	202 (-28%)	176 (-38%)	149 (-47%)	STTS-VideoSwin-B [40]	$237 \times 1 \times 3$	
	SSV2 Acc. (%)	69.6	69.6 (-0.0)	69.5 (-0.1)	69.2 (-0.4)	STA ³²⁰ -VideoSwin-B (ours)	$188 \times 1 \times 3$	
	SSV2 GFLOPs	321	241 (-25%)	215 (-33%)	188 (-41%)	STA ⁴⁸ -ViT-B (ours)	$116 \times 2 \times 3$	

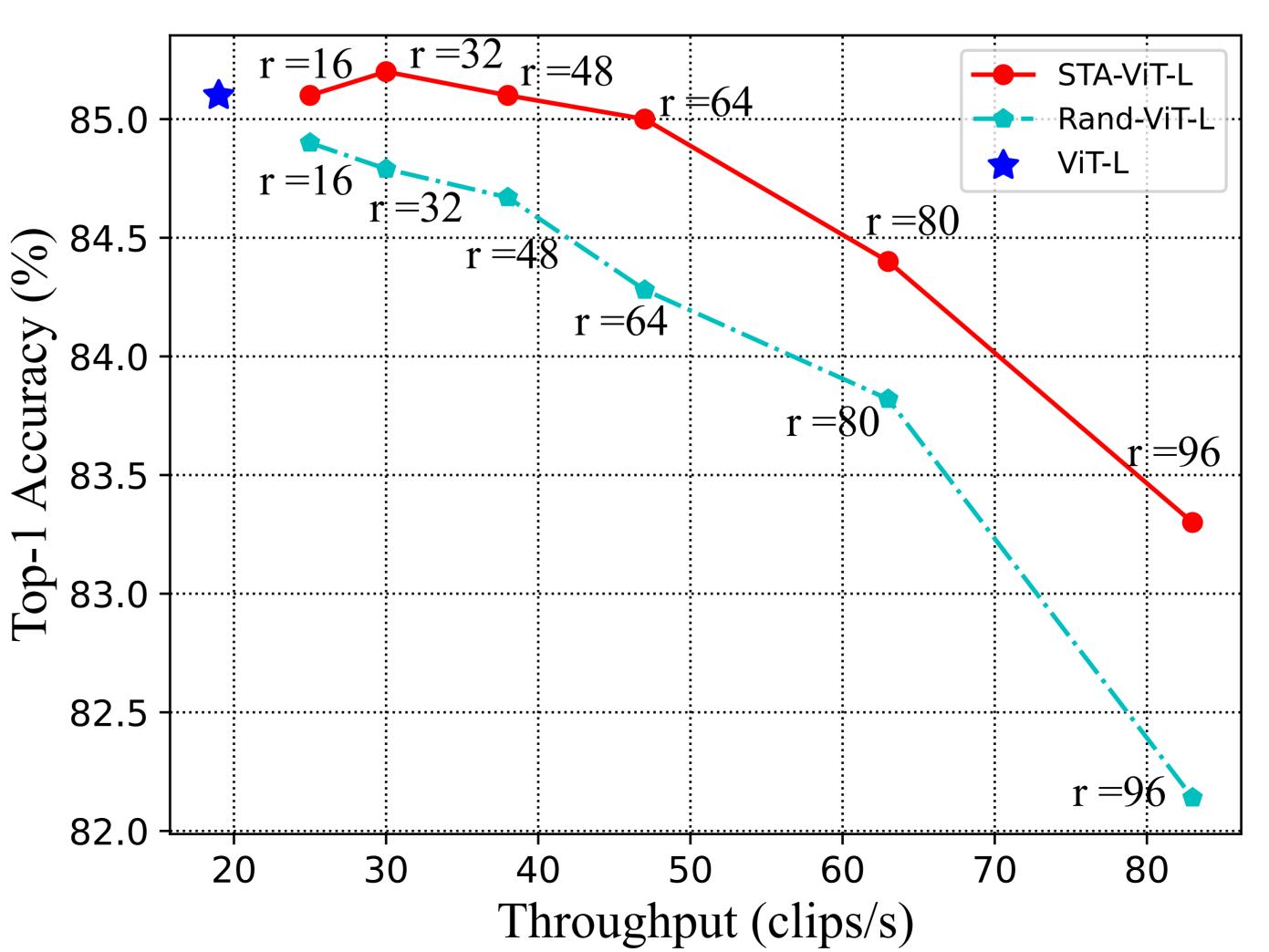


Fig 4. Top-1 accuracy and throughput between ours and random-drop with various prune numbers r.

> Figure 2 displays the intuitive bubble plot for our method. The proposed STA saves over 30% FLOPs for all model variants with a negligible drop in performance.

> Table 1 and 2 report our main experimental result on K400 and SSV2, two standard action recognition benchmarks using two mainstream Transformer backbone.

> Tables 3 and 4 offer comparisons with prior research. The proposed STA

demonstrates an optimal balance between FLOPs and accuracy.

 \succ We vary the prune number r and compare our STA against the random pruning

 \triangleright Figure 5 reveals sparse patterns, indicating that most tokens do not contribute

Tab 2. Main Results for STA-VideoSwin on K400 and SSV2. Tab 4. Comparisons with prior arts on SSV2.

68.

70.5

69.6

68.7

69.2

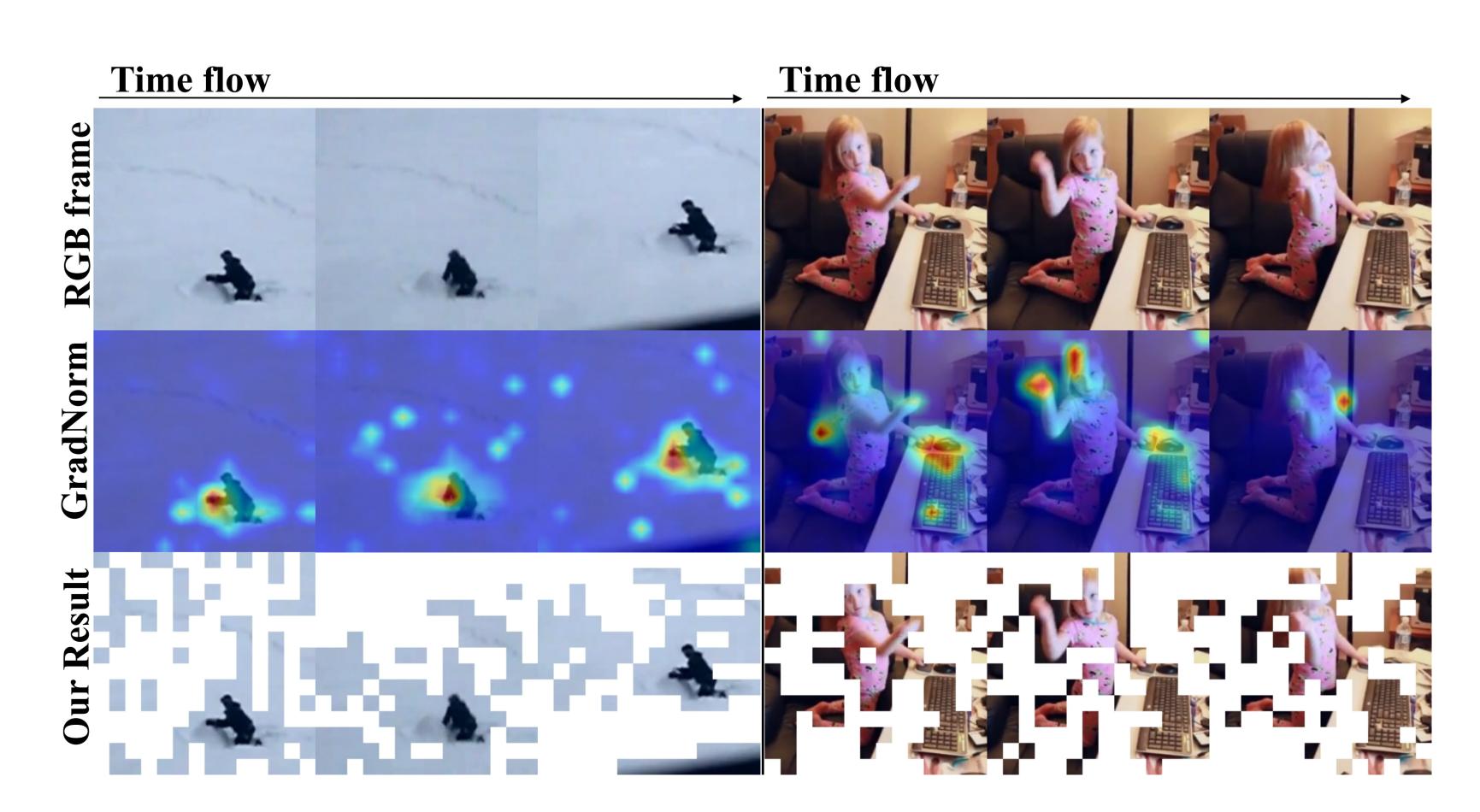


Fig 5. Gradient visualization for ViT-Large on the Kinetics-400 validation set. Our pruning algorithm preserves the area of rich semantics well.