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Abstract:
Ø Task: Object-centric video representation learning, including 

unsupervised video object segmentation and spatio-temporal 
correspondence.

Ø Motivation: Jointly utilize high-level semantics and low-level 
correspondence to parse the object structures. There exist consistent
semantic patterns for similar objects across scenes, while the temporal 
correspondence cues vary with specific scenes.

Ø Our solution: We propose a two-stage semantic-aware slot 
attention for semantic decomposition and instance discrimination. We 
distill temporally coherent object-centric representations in a fully self-
supervised manner.

Method:
Ø Fuse the frame-wise feature and simple temporal correlation map to 

carry on rich semantics and temporal correspondence cues.

Ø Formulate a set of learnable Gaussian distributions consisting of mean 
and deviation vectors. The former represents potential semantic 
centers, the latter introduces random perturbation to capture temporal 
correspondence patterns.

Ø Develop two-stage semantic-aware slot attention, which first uses 
mean vectors as slot initialization for semantic decomposition, then 
performs random sampling around each semantic center to identify 
instances within the semantic area.
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Ø Semantic Consistency: First determine dense patch correspondence across time with optimal transport, then align the semantic distributions.

Ø Instance Consistency: First filter out non-existing semantic centers and invalid instance slots, then encourage temporally coherent object representations.
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Experiment:
Ø Unsupervised video object discovery: Single object segmentation on DAVIS-

2016, SegTrack-v2, FBMS-59; Multiple object segmentation on DAVIS-2017-Unsupervised.

Ø Dense spatio-temporal correspondence: Semi-supervised video object 
segmentation on DAVIS-2017; Pose tracking on JHMDB; Human part tracking on VIP.

Conclusion:
Ø Unify semantic discrimination and temporal correspondence for object-centric video 

representation learning.

Ø Achieve fully self-supervised video object instance identification with semantic structure.

Ø Efficiently transfer object knowledge to more general video understanding tasks.


