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Abstract:

» Task: Video Representation Learning

» Problem: Background Bias. As seen in Fig 1, when naively pulling two augmented views of
a video closer, the model tends to learn the common static background as a shortcut but
fails to capture the motion information.

» Our solution: We propose Foreground-background Merging (FAME) to deliberately compose
the moving foreground region of the selected video onto the static background of others.

Experiments:

» We conduct ablation study on the range of [3. The performance is reported in Table 1.

» We explore whether the performance would change dramatically using the background in the same video instead of other videos in Table 3.

» To verify the effect of moving foreground, we devise three variants of ground mask: (i) Gauss, (ii) Seed, and (iii)) Grid. The results are in Table 4
and Fig 4.

» We report Top-1 accuracy on UCF101 and HMDBS51 in Table 5.

» We finetune and test our FAME on a more challenging fine-grained dataset Diving48 and report the results in Table 2.

» We report the performance comparison on the video retrieval task in Table 6.
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layers of R(2+1)D. The learned kernel weights in the
supervised/contrastive/FAME manner are violin-
plotted from left to right.

Table 5: Comparison with the existing self-supervised video representation learning
methods for action recognition on UCF101 and HMDB51.

representation learning methods for video retrieval. All methods
are pretrained on Kinetics-400.



